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Separated Component-Based Restoration of
Speckled SAR Images

Vishal M. Patel,Member, IEEEGlenn R. Easley, Rama Chellapgzllow, IEEEand Nasser M.
Nasrabadifellow, |IEEE

Abstract—Many coherent imaging modalities such as Synthetic methods are based on a window processing of the noisy image.
Aperture Radar (SAR) suffer from a multiplicative noise com-  Consequently, their performance depends significantlyhen t
monly referred to as speckle which often makes the interpredtion type, direction and the size of the filter used. Furthermore,

of data difficult. An effective strategy for speckle reducton is . .
to use a dictionary that can sparsely represent the featuresn ~SOM€ of these filters often fail to preserve sharp features su

the speckled image. However, such approaches fail to capter as edges.

important salient features such as texture. In this paper, w

present a speckle reduction algorithm that handles this isse To overcome some of these limitations, wavelet-based meth-
by formulating the restoration problem so that the structure and ods are often utilized [12], [13], [14], [15], [16], [17] inkich
texture components can be separately estimated with diffent  ngjse shrinkage is applied to the detail wavelet coeffisierfit

dictionaries. To solve this formulation an iterative algoiithm iy . . oL
based on surrogate functionals is proposed. Experiments dticate the noisy image [18],[19]. Since speckle is multiplicative

the proposed method performs favorably compared to statedo nature, some of these methods often apply logarithm tramsfo

the-art speckle reduction methods. to SAR images to convert the multiplicative noise into aigdit
Index Terms—Synthetic Aperture Radar, speckle, multiplica- noise. After applying soft or hard thersholding to the watel
tive noise, image restoration. coefficients of the logarithmically transformed image, ar e

ponential operation is employed to convert the logaritfaihyc

| INTRODUCTION transformed image back to the original multiplicative fatm

Coherent imaging systems such as SAR, holography, ultradt is well known that shrinkage-based denoising algorithms
sound, and synthetic aperture sonar suffer from a muléifilie rely on the sparsity of the representation. A fixed transform
noise known as speckle [1]. Speckle appears when objestgh as a wavelet transform can represent a piecewise smooth
iluminated by coherent radiation have surface features thmage sparsely but it may also fail to represent an image
are rough compared with the illuminating wavelength. It igith textures sparsely. As a result, the overall denoising
caused by the constructive and destructive interference pgrformance of a fixed transform on an image containing both
the coherent returns scattered by many elementary reffectpiecewise smooth and texture components can be inadequate.
within the resolution cell. Speckle can make the detection
and interpretation difficult for automated as well as human Another popular approach for restoring speckled images
observers. In some cases, it maybe important to remd@olves total variation (TV) regularization [20] whereeth
speckle to improve applications such as compression, ttarg@derlying reflectivity image is assumed to be piecewise
recognition and segmentation. smooth [21], [22], [23]. It has been shown that TV regular-

Many algorithms have been developed to suppress spedgrtion often yields images with the stair-casing effect][2
noise [2], [3], [4], [5], [6], [7]. One of the simplest apprazes AS @ result the estimated image usually contains constant
for speckle noise reduction is known as multi-look progegsi regions and fine details such as textures are often removed.
It involves non-coherently summing the independent imagd8 deal with some of these effects, a hybrid method that
formed from L independent pieces of the phase history. THeéses coefficient thresholding and TV regularization on the
averaging process reduces the noise variance by a factofagrarithm of the magnitude image or the log-image domain
L. However, this often results in the reduction of the spati¥fas recently proposed in [25]. In particular, hard-thredimg
resolution. Other types of speckle reduction methods aseda©n the curvelet coefficients of the log-image is first applied
on spatial local filtering performed after the formation bét Then a variational method that uses &n fidelity to the
SAR image. Various filters have been developed that avoid tHgesholded coefficients and a TV regularization in the log-
loss in spatial resolution [2], [8], [9], [10], [11]. Some tifese iIMage domain is applied.

V. M. Patel and R. Chellappa are with the Department Of Eieaitr Several methods have been proposed that use a combined
and Computer Engineering and the Center for Automation &ebke UMI- dictionary approach to image restoration. Suppose thatreve a

ACS, University of Maryland, College Park, MD 20742 USA (iin . . . ;
{pvishalm ram;}’@umiacgumd_edu) 9 ( given M different dictionariesD,,,, m = 1, ..., M, then one

G. R. Easley is with the Norbert Wiener Center, DepartmenMath- can obtain} different estimates at by applying either hard
ematics, University of Maryland, College Park, MD 20742 U&Mail:  or soft threshold to the coefficients from each correspandin

geasley@math.umd.edu). L. N . . .
N. M. Nasrabadi is with the U.S. Army Research Lab, AdelphD B0783 dictionary. Letx; be the resulting estimate from thih

USA(e-mail: nasser.m.nasrabadi@us.army.mil). dictionary. Then, a simple estimator »fis given by averaging
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M individual estimates

1 M
x=—=3 %
P>

This is essentially the idea behind translation-invarieaelet
denoising by cycle spinning [26], where the final estimaf
is obtained by averaging the estimates from the threshold
orthogonal wavelet coefficients of translated versionshef t
original image. This method has been applied for specK
reduction in SAR imagery [12]. This simple method sufferg
from some issues in practice as it weights equally both
good and bad quality estimates. To deal with this proble s
a Bayesian framework to optimally combine the individug#s
estimators was proposed in [27]. This method weights eaf&¥
estimatex; at each sample according to the significance th#
the elements in the dictiona®; have in synthesizing; at
the same sample. This method is effective, however, it can
very time consuming. A similar approach was also propos
in [28].

A novel cartoon and texture image component-basg
restoration for SAR images was proposed in [29]. Specifical
a SAR image, considered as a functifyis to be decomposed
into a sum of two components= u + v, whereu represents (c) (d)
the cartoon or geometric (i.e. piecewise smooth) COMPGNERly 1. |mage separation. (a) Original image. (b) Strudte@mponents.
of f, andv represents the oscillatory or textured components) Textural components. (d) Structural + Textural compiseNote that the
The second component essentially accounts for noise and x@iral components in (c) contains some important feature
texture elements. In the proposed techniquds estimated
and is considered as the restored (despeckled) image wibile
textured components af are not attempted to be recovere({s
This is problematic since discarding the texture compane
may result in the loss of important salient features in a SA
image. Figure 1 provides an example of how an image sep-
arates into the structural and textured components irndigatwhere F' is the normalized fading speckle noise random
the importance of retaining these textural elements. variable. It follows a Gamma distribution with unit mean and

Motivated by recent advances in sparse representativasiance; and has the following pdf
based image separation [30], we propose a similar separatio 1
based despeckling method so that the image is decomposed p(F) = mLLFLflefLF, (2)
into a sum of piecewise smooth and textured elements. Our ]
formulation is based on finding sparse representationsestth £ = 0, L > 1 whereI'(.) denotes the gamma function. _
elements from dictionaries specifically suited to compress 1N€ natural logarithmic transformation converts the multi
them and differs significantly by not just treating the teetu Plicative noise model (1) into an additive model
and noise components as complements of the cartoon-based Y =In(Y) = In(F) + In(X)
estimated image. By taking advantage of the ability of spars -

A : =F+X, 3
representations in our scheme to estimate, we are ablesia ret
important salient and textured features in the final esthatwhere ¥ = In(F) and X = In(X). The pdf of the random
image. variable " is given by [32], [31]

oise. Assuming the SAR image represents an averade of

0oks,Y is related toX by the following multiplicative model
1]

Y = FX, (1)

p(F) = ﬁLLeﬁLe_Leﬁ. (4)

The mean off is given by

A. Organization of the paper

Section Il reviews the statistical models for SAR image
In Section Ill, we present the component separation algorit R
based on surrogate functionals. In Section IV, we show some E[F] =(0,L) —In(L)
of the results on both real and simulated data, and present

: . . gﬁd variance is given b
concluding remarks in Section V. g y

var(F) = ¢(1, L),

Il. STATISTICAL MODELS FORSAR IMAGES where

Let Y € RV*N be the observed image intensit), ¢ ) — k+11 -
RY*N pe the noise free image, afde RY*Y be the speckle bk, t) = it nl(t)
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is known as thé;th polygamma function. to directly seek the images whose transform coefficients or
Note that there exist many statistical models for SARictionary representations are sparse. This corresponds t

images [33], some based on mathematical approaches aoling the following optimization problem:

others based on physical approaches. In this paper, we use, . .

the logarithmic transform to convert the multiplicativeise Xps Xt = arg,{i}},{i /\IIDprlh + /\”sztnl +7IV (%)

to an additive noise and take into account the appropriate 1 0

distribution model to handle the noise. + 5”3’ = Xp — Xe2, (®)

1. | MAGE COMPONENT ESTIMATION Whel’eDI denotes the Moore-Penrose pseudo inversB pof
Here, we have assumed that the two redundant dictionages ar

Né_et v, an(_jxpejexmog[apmcally prdered vectors of SIZ& full rank and we can obtain the analysis operator from the
representng_,F,_ and_X, respecnve_ly. We assume tha ynthesis by using the following relations
the SAR reflectivity field is a superposition of two different
signals ap = DLXP
X:Xp+Xt, (5) o = DIXt-
wherex,, is the piecewise smooth component:ofindx; is

o One of the major advantages of using (8) is that it requires
thgtttexture component of. So the additive model (3) can beggarching lower dimensional vectors rather than longer di-
written as

mensional representation coefficient vectors. This irsgsa
y=x+f numerical efficiency and decreases memory constraints.
=xp+x +f. (6)
A. lterative Shrinkage Algorithm
Various methods can be used to obtain the solution of (7)
4] [35]. In this section, we derive a fast convergent itieea

We further assume that, is compressible in a dictionary
represented in a matrix form &B,, and similarly, x; is

compressible in a dictionary represented in a matrix form , ) .
D,. Given M,, M, > N2, the dictionaryD, € RN?xM, S rinkage algorithm by a method of using Separable Sureogat
. 5 el ’ P

andD, € RN *M: are chosen such that they provide Spar{unctionals (SSF) to solve the separation problem posed)in (

representations of piecewise smooth and texture conte 3%(1[36] [(??1 glf‘c;r simplicity, ;/\?e atshsur(?_e thﬁ]_: [D.P’D;]]
respectively. That is, we assume there are coefficient k&ect na-discar component for he giscussion given here.

ap € RM¥1 anda, € RM! so thatx, = D,a, and he objective function in (7) can then be re-written as

x; = Dyay. The compressibility assumption means that when _ } _ 2

the coefficients are ordered in magnitude, they decay napidl f(@) = ey + 2 ly =Dl ©

The texture dictionaryD; needs to contain atoms that argvherea contains both the piecewise smooth and texture parts.

oscillatory in nature such as those found in the discretet

cosine/sine transform and the Gabor transform. The diatipn d(a, o) = EHQ — ol - 1||Da —Daol2, (10)

D,, should be able to process images with geometric features 2 2

such as edges. The mati¥, could represent some type ofwhereqy is an arbitrary vector of lengtlv? and the parameter

wavelet, shearlet, curvelet, or contourlet dictionary. ¢ is chosen such that is strictly convex. This constraint is
One can recover the SAR reflectivity fieldby estimating satisfied by choosing

the componentsx, and x; via «, and «; by solving the

foIIowingpvariatiorfal problem: ! ’ ° ¢> DDz = Anax(D'D),

Ty . . .
&, Gt = arg;nig Meapll + Meaely + 7TV (Dyay) where M\, (D* D) is the maximal eigenvalue of the matrix
pr &t

DTD.
1 Adding (10) to (9) gives the following surrogate function
+ 5lly = Dyay — Draul, ™) G B { surrog
FroN 2, ¢ 2 2
where TV is the total variation (i.e. sum of the absolute (@) _)‘HO‘”H‘QHy—DO‘H2+§||O‘_0‘0||2_§HDO‘_DO‘0H2'
variations in the image) and for aN-dimensional vectok, . o (11)
.l denotes the/,-norm, 0 < ¢ < oo, defined as This surrogate functiorf(«) can be re-expressed as
1 ~ A 1
A f(@) = A+ Zllally + 5 lla = xo%, (12)
elly = | D il )
i=1 where )
The two components are the corresponding representations Xo = EDT(Y—DO«)) +ap

of the two parts and can be obtained Ry = D,d&, and
x; = Dyé&,. This notion of separating a signal into differen
morphologies using sparse representations is often kn@wn
Morphological Component Analysis (MCA) [30]. -1 if <0
Instead of seeking the sparse sets of coefficieptanda; signz) =4 0 forz =0
directly and then inverting the representations, it is flides 1 for z > 0.

f’;md A is some constant. Leta); denote the function
n&ax(a,o) and sign(x) be the signum function defined as
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Given that Input: y,c.
. Initialization: Initialize kK = 1 and set
S = Si - A 13
A(x) gn(x) (|| )+ (13) X0 =0,x) =0, 1 = y— Xg —xV, and A0 =

p
is the element-wise soft-thresholding operator with thods % (IIDEylloo + ||DtT.Y||oo) ‘

)\, the global minimizer of the surrogate function is given by| repeat:
1. Update the estimate of, andx; as

Qsol = Sk/c (XO)

1. X
:SA/C ED (y—Dao)+a0 . (14) N —
p = HSyx (H Xp)
It was shown in [36] that the iterations X = DSy (_D;f(rk_l) n Difckl)
1
k+1 T k k
ot =8, (ED (y —Da”) + « ) (15) 2. Update the residual as
. . . . . k f— J— k — k
converge to the minimizer of the functiohin (9) where the =Yy =X =X
superscripk indicates that it is the value for thigh iteration. 3. Update the shrinkage parameter as
By breaking the above iteration into the two representation 1
parts and considering th&'V' term, we get the following P 5 (ID] ¥l + DY ¥ o) -

iterative updates that essentially solves (7) ) ) o o
until: stopping criterion is satisfied.

Output: The two components, = x» andx; = x;.

- 1 . . .
Oé];"’l :8)\/0 (EDg(y—Dpaﬁ —Dtaf)—l—ag) (16)
a’;'H = DZ;HS’Yk (HTDpd’;“‘l) (17) Fig. 2. The SSF iterative shrinkage algorithm to solve (8).

ot =Sy, (DF(y - Dyt - Diaf) +at ), 19)
C
V. EXPERIMENTAL RESULTS

whereH is the undecimated Haar wavelet dictionary. A de-

tailed description of the undecimated Haar wavelet tramsfo I this section, we present the results of our proposed
can be found in [38]. We have replaced tf@ correction despeckling algorithm and compare them with the enhanced
term by a redundant Haar wavelet-based shrinkage estirmaté-@€ filter [2] and some recent state-of-the-art methods, [25]
this seems to give the best results. This adjustment isexppll21]l; [22], [30]. We also compare our results with a Stein-
only to the piecewise smooth component to control the riggirBlock thresholding (SBT) method proposed in [40]. This
artifacts near the edges caused by the oscillations of tresat method was shown to be nearly minimax over a large class
in the dictionaryD,. The same adjustment was used in [309f images in the presence of additive bou_nded noise. This
and the substitution was partially motivated by observimg t Method requires a threshold parameter which we set to the
connection betweefV and the Haar wavelet given in [39]. theoretical value 4.505 as derived in [40]. Furthermore, we

The iterations presented above can be extended to harffi@'Pare the performance of our combined dictionary-based
the analysis formulation in equation (8). This is simply don@bproach to despecking with that of a fixed transform-based

by modifying iterations (16), (17) and (18) as follows despecking method. In particular, we apply soft-thresingld
on the subband coefficients of the wavelet transform. We call

k1 1 7 N ok the resulting method wavelet-based thresholding (WT) tker
XPJF =Dyp-Sxse <ED” (v =%, - %)+ DIT?XP) (19) MCA method [30], we use the curvelet transform to represent
XI;-H = HS.. (HTil;-ﬁ—l) (20) the piecewise smooth component and 2D-DCT to representant
1 the texture component.
xf T =D;.Sy /e (—DtT(Y —%F —xf) +DI§<§> . (21) In Fig. 3, we display the test images used for different
¢ experiments in this paper. In these experiments, we use the
We summarize the algorithm for recovering the two separati@lative error (RE) and the equivalent number of looks (ENL)
components of a SAR image in Fig. 2. In step 3 of the algé® measure the performance of the routines tested:
rithm in Fig. 2, /.| denotes thé.,-norm. For anN dimen-

sional vectorx, it is defined ag|x||oo = max(|z1|,--- , |zn]). RE — 1% = x|l
Once the two denoised componentsxoére estimated, we 12
obtain the final estimate of as
meart
% = exp(%, + %1). (22) ENL = Carance

Since, the logarithmic transformation introduces a bias avhere the mean and the variance are measured within a
the final estimate, we correct it along with the exponentillbmogeneous region (see [21] and [2]). A large ENL value
transformation [12], [25]. corresponds to better speckle reduction.
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Fig. 4. A few atoms from a shearlet dictionary. Each blockrespnts
the result of the applying the shearlet transform for a paldr scale and
orientation after applying it to a centered impulse respons

Fig. 3. Images used in this paper for different experimefas256 x 256
Cameramarimage, (b)512 x 512 Fieldsimage, (c)512 x 512 Nimesimage.

A. Dictionaries

In our experiments, we use a dictionary corresponding to
the shearlet transform to represent the piecewise smoath co
ponent. Shearlets extend the traditional wavelets by atigw
for waveforms to be defined not only at various scales apg) 5. A few atoms from the 2D-DCT dictionary. Each blockneents the
locations but also at various orientations [41]. The sharkesult of applying the inverse 2D-DCT transform to impulesponses which
transform is best suited for representing images with edgds 2 centered at various locations.
anisotropic structures. Moreover, numerical results gve
dencc_e to the superior behavior of shearlet-based decotrmn5|B Parameters
algorithms when compared to curvelet-based and conteurlet
based algorithms [41], [42]. This is the reason why we chooseFrom the discussion in section Ill, the parameteshould
shearlets instead of curvelets and contourlets in our @gpro be chosen such that> \y.x(D,D; +D;D{’). This can be
A brief discussion about the shearlet transform is giverhin t Satisfied by choosing > 2. In particular, the value we choose
appendix. Fig. 4, shows some atoms from a shearlet diconaasc = 3.

In our implementation, we used the nonsubsampled shearleThe Haar shrinkage valug” in step 1 of the algorithm
transform with the decomposition structu 3,4, 4] which is 305 , where o is the standard deviation of the noise
determines the number of directions in the scales from eoagstimated by using a median estimator on the finest scale of
to fine. As a result, the size @, is N2 x 56N2. the Haar wavelet coefficients of; [19].

The discrete cosine transform is known to closely approx-
imate the Karhunen—Loeve transform for a class of rand
signals known as first-order Markov processes that mo(()jae}
several real-world images. Explicitly the coefficients bet ~ We change the threshold value df during each iteration
DCT for anN x N imagex = (z,,,,) are according to

Stopping rule

N—-1N-1

X5 = % S™ Y i cos(m(m — 1/2)(j — 1/2)/N)

m=0 n=0

1
A =2 (IDyx"loe + D x*10)

and stop the iterations whext < T'o, whereT ~ 2.1 [43].

x cos(m(n —1/2)(k —1/2)/N). This way we stop the iterations when the residual is at the
It is clear the oscillatory nature of the basis functions camoise level and the noise is rejected in each component. Note
represent repetitious elements common to texture comp®ndhat this step of the algorithm assumes the noise variance to
which is why they are commonly use for this purpose. A felwe known. This is not a problem since the noise variance can
atoms from the 2D-DCT dictionary are shown in Fig. 5. Theasily be estimated by using a median estimator on the finest
number of atoms in the dictionad®; are64 x N2. scale of the wavelet coefficients gf[19].
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D. Results on simulated data

In Table I, we report the results of experiments on t
simulated data with various number of looks. We did nd
have access to the codes of [25], [21] and [22]. Hence, &
report the relative error values reported in the correspand
papers. Figures 6 and 7 show the noisy and restored ima
for some of the experiments with the simulated data. It c4
be seen from these figures and the results in Table | thg
our method performs favorably over some of the competitiy
methods for speckle reduction. In particular, this is theeca g
when the number of looks is greater than three. Furthermore,
these results clearly indicate that an improvement is &ekie 2
when a combined dictionary approach is used to restore a S
image as can be seen by comparing the results of our metif
with that of SBT, MCA and WT in Table I.

(e) (f)

Fig. 7. Experiment with thé&imesimage. (a) Noisy imagel, = 10, RE =
0.315. (b) Restored image using our methd@E = 0.163. (c) Noisy image,
L =4, RE = 0.501. (d) Restored image using our methddE = 0.207.
(e) Noisy imageL = 1, RE = 1.001. (f) Restored image using our method,

(C) (d) RE = 0.290.

Fig. 6. (a) Noisy imagel. = 4, RE = 0.498. (b) Restored image using our
method, RE = 0.118. (c) Noisy image,L. = 4, RE = 0.500. (d) Restored parformance of our method. The value of ENL is estimated
image using our methodRE = 0.065. . . .
from the two32 x 32 homogeneous regions (shown with white
. ' I , boxes). We refer to the region left side of the image as R1 and
Using the Cameramanimage, in Figure 8 and Figure 9, ; : . .
: I . 'the right side of the image as R2. The estimated ENL values

we show the evolution of the objective function and relative . .

. are reported in Table Il. As can be seen from this table, our
error, respectively, as we vary the number of looks. Note tha
N ; . method outperforms the WT, MCA and SBT methods.
in Figure 9, the relative error decreases significantlyrdfie

iterations and saturates around the tenth iteration, stypthiat The despeckling results from various methods are shown

the proposed method is efficient and requires less numberj%_fF_igur?S 11(b)-(d) ar_1d Figu_res 12(b)-(d). The ratios of th
iterations compared to [21]. original image to the filtered images, referred to as theenois

images, are shown in Fig. 11(e)-(h) and Figures 12(e)-(h).
It is evident from these figures the single dictionary-based
E. Results on real SAR data reconstructions such as SBT and WT suffer from noticeable
In the second set of experiments, we use the real SARifacts. The MCA method based on curvelets and 2D-
images shown in Figure 10(a) and Figure 10(b). These imade8T provides good reconstruction, however, it removes a lot
were collected using the Sandia National Laboratories Twir point targets. Our combined dictionary approach clearly
Otter SAR sensor payload operating’atband. Since the true provides good reconstructions and removes most, if nooall,
reflectivity fields are not available, we use ENL to measuee tlthese artifacts and preserves point targets. Note that we ha
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TABLE |
RELATIVE ERRORS FOR VARIOUS EXPERIMENTS

[ Tmage [[ L [ Noisy | Ours [ SBT[40] | MIDAL [21] | [25] | [22] | WT [ Lee [ MCA |
Cameraman|| 13 | 0.277 | 0.083 0.104 0.090 - 0.098 | 0.098 | 0.170 | 0.090
Cameraman|| 10 | 0.315 | 0.090 0.111 0.097 0.091 - 0.105| 0.171 | 0.101
Cameraman|| 4 | 0.498 | 0.118 0.144 0.124 0.131 - 0.135| 0.178 | 0.140
Cameraman|| 3 | 0.573 | 0.129 0.156 0.130 - 0.151] 0.147 | 0.182 | 0.151
Cameraman|| 1 | 0.990 | 0.184 0.220 0.167 0.192 - 0.228 | 0.211 | 0.210
Fields 10 | 0.316 | 0.054 0.058 0.056 0.055 - 0.063 | 0.063 | 0.052
Fields 4 | 0.500 | 0.065 0.073 0.066 0.066 - 0.077 | 0.804 | 0.071
Fields 1 | 1.000 | 0.099 0.114 0.089 0.096 - 0.159 | 0.135| 0.110
Nimes 10 | 0.315 | 0.163 0.312 0.170 0.174 - 0.195 | 0.273 | 0.186
Nimes 4 | 0501 | 0.207 0.223 0.217 0.217 - 0.247 | 0.277 | 0.221
Nimes 1 | 1.001 | 0.290 0.312 0.301 0.314 - 0.346 | 0.298 | 0.320
—P‘—L:l3
—v—L=10
—— | =4
L=3 H
——L=1
S ]
E
Z
2 |
o 1k | Fig. 10. Real SAR images used for the experiments.
05 41 not compared our method on the real SAR images with the
other methods since their implementations were not availab
Il Il Il Il Il Il L to us'
1 2 3 4 5 6 7 9 10
Iteration . .
F. Computational efficiency
Fig. 8. The objective function value as a function of itevatinumber for In our image separation-based despeckling method, the most

the experiments with a Cameraman image with various numbleroks.
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Fig. 9.

Relative error vs. number of iterations curves far #xperiments
with a Cameraman image with various number of looks..

5

6

Iteration

9 10

computationally intensive part is in finding the coefficent
from a shearlet dictionary. Using MatLab on a Windows
system with Intel Core 2 CPU 2.16 GHz/3.00 GB processor,
one iteration of the entire algorithm takes around 4.15sds0

On average our method takes about 45 seconds to process an
image of size256 x 256. The performance of our algorithm
can be enhanced by using a more efficient shearlet transform
implementation which is parallelizable. Each iterationoofr
algorithm has the complexity aD(N?log,(N)).

G. Discussion

Note that we have applied our component separation method
on the log-transformed images. However, one can directly
apply this method on the SAR image without applying the log
transformation to separate the piecewise smooth component
and the texture component. For instance, SAR model (1) can
be re-written as

y = xf
=x+ (f — 1)x, (23)
where 1 = [1,---,1]7. In this setting, the first and the

second term in (23) can be viewed=gs andx,, respectively.
In particular, if one has designed dictionaries specifycéd|
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©) M | @ | h)

Fig. 11. Despeckled images. Restored using (a) the SBT mie{bd the MCA method, (c) wavelet-based thresholding ando(ad method. (e)-(h) are the
noise images corresponding to the filtered images in (a)rédpectively.

(e) (® 9) (h)
Fig. 12. Despeckled images. Restored using (a) the SBT mhetbd the MCA method, (c) wavelet-based thresholding and(a method. (e)-(h) are the
noise images corresponding to the filtered images in (a)rédpectively.
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TABLE Il
THE ESTIMATED ENL VALUES.

[ Image || Region[ Original [ WT | SBT | Ours | Lee | MCA ]
Fig. 11(@) | RL 3.201 | 30.366] 49.028| 79.357 | 5518 50.23
Fig. 11(a) R2 3.236 30.428 | 84.936 | 133.962 | 8.263 | 90.89
Fig. 12(b) R1 4.117 44717 | 75.041| 146.379 | 11.35| 85.75
Fig. 12(b) R2 3.007 | 37.253 | 74.641| 101.491 | 11.30 | 86.70

compress these terms then, one can view the first term asfitiea € RT, s € R, andt € R2. The operatolSH defined by
restored image. However, designing dictionaries to cosgre _ ~

the individual terms in (23) is nontrivial. One can adapt SHI(a5,1) = {f, ast)
dictionary learning methods [44] to learn these componenis referred to as theontinuous shearlet transforraf f €
This in turn would require a collection of training imaged.?(R). It is dependent on the scale variablethe shears,
containing only the piecewise smooth reflectivity fields anand the locatiort.

images containing only signal-dependent noise. This fermu The collection ofdiscrete shearletss given by

lation is also relevant in the case when the SAR images, - - /2 .70t 4j o 9
contain a strong additive noise component where the purely{%’M =|det AP (B" Az — k) : 5, L €2,k € L7},
multiplicative model may not be adequate. where

1 1 2 0
V. CONCLUSION 0 1 0 V2

We have proposed a new method of Speck|e reducti&hearlets form a Parseval frame (tlght frame with bOUndaquU
in SAR imagery based on separating an image into variol@sl) for L?(R?) given the appropriate choice of the generating
components. Unique to this approach is the ability to udénction ¢ (see [41] for details). An M-channel filterbank
specific dictionaries of representations suited for sdjmara implementation can be done by using the techniques given in
with an iterative scheme that is able to retain important fef#t6]. As a consequence, its implementation has a complexity
tures. The experiments show this method performs favorat§ly O(V? log,(N)) for an N x N image.
compared to other competitive methods. This new process is
also valuable for many SAR image understanding tasks such as ACKNOWLEDGMENT
road detection, railway detection, ship wake detectioxtute VMP and RC were partially supported by an ARO MURI
segmentation for agricultural scenes and coastline detect Grant W911NF0910383.
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